Jindal Aluminium Limited (JAL), is the largest manufacturer of aluminium extruded profiles in India. JAL offers customers the very best in aluminium extruded profiles, very intricate and sophisticated sections. With our latest CNC, EDM, Wire Cut Machines, JAL can develop dies for new sections within the shortest possible time.

JAL offers wide range of extruded profiles in different aluminium alloys - AA 6063 (63400), 6061 (65032), 6351 (64430), 64423, 6262, 6005, 6082, 6060, 2014. EC Grade alloys - E1E (19501) and E91E (63401)

JAL's assortment of 6000 different aluminium profiles, aluminium sections cater to the high quality aluminium extrusions requirements in various sectors like Building, Agriculture, Railway and Road Transport, Industrial, Electrical, Electronics, Defence and Aerospace.

About Jindal Aluminium Ltd.

Jindal Aluminium Limited (JAL), established way back in 1968, is the leading manufacturer of aluminium extruded profiles in India. Located in the serene outskirts of Bangalore city, JAL is the only aluminium company in India having 6 aluminium extrusion presses under one roof and achieving highest production in the country.

What started as a humble beginning with one 1500 ton American Press gradually expanded to a current collection of world renowned makes of six extrusion presses, each with a different capacity, PLC Controls & modern handling systems.

Aluminium Extrusion

JAL has 6 presses of different capacities; of these presses, 2 are of 2200 tons and one each of 750 tons, 1500 tons, 1650 tons and 4000 tons. Installed production capacity is 75,000 MT per annum. JAL has a most modern tool shop capable of producing high quality & intricate dies backed up by an international quality foundry.

JAL is a forerunner in installing several technological and modern equipments in order to obtain high quality profiles. JAL has developed an in-house foundry using Hot Top casting technology imported from USA, with most modern melting and holding furnaces equipped with automatic temperature controllers.

The adoption of such modern technology produces highly refined close grained and oxide free logs which provide a superior finish on the extruded sections.

JAL carries out the following steps to ensure defect free, high quality aluminium extrusions :

The alloy is instantly analyzed using modern Direct Reading Optical Emission Spectrometer which ensures that the composition remains within close tolerance, thereby achieving the desired mechanical properties.

- The logs are homogenized prior to preheating them, in order to achieve superior quality, improved finish and uniform grain structure necessary for anodizing and powder coating processes.
- The dies and toolings used are manufactured by means of latest computerized equipments like Jig Boring Machines, Wire Cut Machines, Spark Erosion Machines and several other CNC equipments.
- Ageing a thermal treatment is carried out using a high velocity air oven with precisely controlled temperature that results in uniform properties in the extruded aluminium profiles.

- The dimensions of the extruded profiles are checked and ensured by ROMIDOT automatic profile inspection & measurement system.
- The extruded aluminium profiles are finally handled by PLC controlled conveyor system till they are packed. The identification and traceability of the sections are also taken care of by imprinting the company logo on each package.
- JAL possesses in-house facilities for developmental research and innovation to pursue the fast paced advanced scientific development.

Largest Number, Widest Range

JAL provides fitting solutions for every conceivable need. With their portfolio of extruded profiles in different alloys, the requirement of every industry is catered to. Their assortment of alloys includes:

- AA 6063 (63400), 6061 (65032), 6351 64430), 64423, 6262, 6005, 6082, 6060, 2014
- EC Grade alloys E1E (19501) and E91E (63401)

JAL produces very intricate and sophisticated sections, which meets the country's needs and rest is exported to earn valuable forex.

Galaxy of Satisfied Clients

JAL is associated with some of the biggest names in the industry – L&T, Kirloskars, Godrej, Videocon, ISRO, BEL, BHEL, Siemens, TATA-BP, Cummins, GE and MICO-BOSCH to name a few. The client list also include international customers in UK, Spain, Middle East, Australia etc.

Jindal Aluminium Ltd. Quality Policy

Through continuous perseverance of Quality Assurance programme, the Company renews its commitment to ensure reliable quality at a competitive price and in turn earn the customer's satisfaction.

In order to accomplish this, the company strives:

- To detect and prevent any non-conformance during production and implement the means to prevent its recurrence.
- To upgrade technology and improve techniques, systems, procedures and to carry out continuous innovation to meet changing customers' needs.

- To create most congenial and healthy working environment for attainment of quality goals with excellence.
- To develop highly motivated and skilled human resources imbued with strong sense of values and commitment to quality.

To improve the quality of life of communities living around the company in particular and society in general by providing basic needs like health, water, education etc.

Quality – A Motto

JAL strives to accomplish and maintain the finest quality of products in the industry. To achieve this purpose, Company utilizes:

- Ultra modern microprocessor based, PLC controlled extrusion press.
- Computerized Spectrometer for instant metal analysis.
- Computer aided die manufacturing facilities.
- Well equipped physical, chemical, mechanical and metallurgical testing laboratory and sophisticated R&D Division duly recognized by the Dept. of Scientific and Industrial Research, Govt. of India.

The strict adherence to quality to make the products superior and incomparable in the market forms the guiding principle for every Jindal employee. Standing testimony to JAL's achievement is the IS/ISO 9001:2000 certification, awarded by the Bureau of Indian Standards, the first one in the Indian aluminium extrusion industry. Numerous other National and International awards have also been added to JAL's list of accomplishments.

Exports

Jindal Aluminium Limited is the largest Manufacturer and Exporter of Aluminium Extruded Profiles from India, registering growth of over 35 % on quantity basis for last three consecutive years and is confident of achieving even higher growth in coming years. Jindal's unblinking focus on quality in all aspects of our operation is driving us ahead in International Market. Besides, one of the pioneer to be awarded ISO 9000 recognition in the year 1994, Jindal is the first in India to be awarded ABS (Americal Bureau of Shipping) Plant Approval, thus Jindal is now approved manufacturer to supply material for marine grade application.

Our Export department is fully equipped with latest tools of communication, skilled manpower and is committed to provide best services to all our customers. Our specially trained and committed team capable of handling Export Logistics, an vital aspects in International Trade to ensure timely shipments / deliveries of orders as per schedule agreed.

Our 4000 US Tons press imported from SMS Scholeman, Germany is state of the art technology, enabling Jindal, to manufacture and supply wide profiles as wide as 450 mm depending upon shape and size with tighter tolerances, thus meeting requirements of large sections.

Some of the other salient features of Jindal are as under:

- Annual Production capacity of 75,000MT
- Wide range of profiles to choose from up to 450mm wide profile
- Largest aluminium extruder in India
- In-house Billet Casting and Die manufacturing facility
- Self sufficient in energy requirement through Our Wind Power Mill
- Capable of dispatching material within 2 weeks, if dies are ready

Jindal's products enjoy wide international acceptance and are renowned for their high quality and reliability. Our international presence is in over 26 countries across the globe including USA, Canada, Brazil, UK, Europe, GCC countries, South Africa, Mauritius and Australasia etc. With our consistent product quality and services, Jindal has received many awards from prestigious organizations. Jindal has been awarded silver shields for Star Performance for highest Exports of Aluminium Extrusions from India during 2006 and 2007 by Engineering Export Promotion Council, a Government of India recognised agency. Some of the other recognitions are as under:

GENERAL INFORMATION

ABOUT CATALOGUE

Te sections shown in this catalogue are considered standard for which dies are available with us on the date of publication and are available to customers without die charges. We are continually adding to the range of extrusion dies. If the particular section, required by you, is not given in the Catalogue, please write to our Works/Branch Offices to meet your specific needs To avoid confusion and delay in the processing of enquiries and execution of orders, correct and detailed information about the desired sections are required.

All the Standard Sections given in the catalogue are generally available in Alloy 63400 & Temper WP (HE9WP) corresponding to IS-733 & IS-1285. Extrusions in alloys other than these would be subject to special enquiry.

ABOUT EXTRUSION

Extrusion is the most modern and very versatile method of forming Aluminium. The aluminium logs, after casting to the specified alloy are fed into the continuous homogenizing furnace wherein it is heated to a desired temperature. The logs are then fed into hot log shear where the logs are sheared to required size billets. These are pushed under tremendous pressure, applied by a hydraulic ram, through a shaped aperture in a steel die. The die aperture may have almost any imaginable contour, thereby making it possible to produce infinite shapes and the cross sections can be sawed to the required lengths. It is possible to control the finish of the extruded sections to such a degree, during its passage through the steel die that no further finishing may be necessary, and if required, the part may be anodized straight away into attractive colours for higher consumer appeal.

PHYSICAL PROPERTIES OF ALUMINIUM Specific Gravity - 2.70 Electrical Conductivity - 53 to 62% IACS Co-efficient of linear expansion - 22 x 10⁻⁶ mm/mm/°C Thermal conductivity (at 20°C) - 0.53 Cal/Sq.cm/Sec./cm/°C Electrical Resistivity (at 20°C) - 2.850 micro-ohm (for EC-0) Modus of Elasticity - 7 x 10⁵kg/cm²

PRODUCT SPECIFICATIONS

ALLOY	INDIA = 63400; AMERICA = AA6063; BRITISH - BS HE9
	(NOTE: Other Alloys can be given against specific enquiries)
MECHANICAL	UTS: 185 Mpa/Min); Elongation: 7% (Min); Hardness: 70 to 50 Rockwell E
PROPERTIES	
EXTRUSIONS	Up to 275mm for solid sections. Up to 290mm for hollow sections
WIDTH / (CCD)	·
LENGTH	As per customer's requirement
WEIGHT	The weights kg/m given in catalogue are the nominal weights. In practice,
	tolerance, alloy and such other factors will affect the final weight and a normal
	variation of + or - 10% should be expected.
DIMENSINAL	Generally as per British Standard BS 755/EN12020-2
TOLERANCES	a) IS 3673 : For Round Tubes
	b) IS 6477 : For Hollow Sections (Other than round tubes)
	c) IS 3965 : For Solid Sections

ME	TALI	LUR	GICAL A	ND	MEC	HAI	NICAI		AND TO	OLERANC	CES
			AL	LO	Y EQ	UIVA	ALEN ⁻	TS TABL	E		
IS India (NEW)	(B) 01 ((S)U.K r I.S.)LD)	(AA) U.S.A	(A C	(AICAN) [Canada Ger		DIN many	ASTM	(JIS) Japan	(AFNOR) France	Russia
19500	E	1B	1050 or 1060		IS AI		99.5	99.6 A	AI-1	A-5	-
19000	E	1C	1100		2S	AI	99.0	99.0A	AI-3	A-4	A-2
19501	E	1E	EC	CI	SDIA	E-A	1 99 .5	EC	AI-1	-	-
63401	E	91E	6101	D)50S	E-A Si	I-Mg.	GS 10B	-	-	-
-	N	E-3	3103		3S	A	I Mn	-	-	3103	-
52000	N	E4	5052	N	157S	AI	Mg2	GR 20A	A2-SI	A-G3	AM
53000	N	E5	5086	Į	54S	AIN	/lg3.5	GM 40A	-	-	-
63400	Н	E-9	6063	Į	50S	A SI	IMg 0.5	GS 10A	A2-S5	A-SG	-
24345	HE	E-15	2014	E	326S	AI-	Cu-Si	-	-	-	-
76528	HE	E-17	7075		-	AlZn5	,5MgCu	7075	A7075	7075	-
65032	Н	E-20	6061	(65S	A S	l Mg iiCu	GS 11A	A2-S4	-	-
64430	Н	E-30	6351/6082	В	851S	A	IMg Si1	6351	-	6081 (NP)	-
62400		-	6005	С	51S		-	6005	-		-
64423		-	-	С	62S		-	-	-	-	-
-			-	6	262		-	AIMg1 SiPb	6262	-	-
			TEN	/IPE	ER DE	SIG	NATIO	ON TABL	E		
INDIA or	U.K	U.S.	A or CANA	DA	IS(TEMI) PER	Descr	iption of c	lesignati	on	
0			0		0		Anneal	ed			
Μ			F		F		As fab	icated, as m	anufacture	ed or as cast	
-]₃)	Solutio	on heat-treat	ed, and co	Id worked	
vv			I ₄)	amena	ble to artific	ial ageniq	ny ayeu anu	
Р			T_5		TE		Artifica	ally aged or p	precipitatio	on heat-treate	d
WP			T_6		TF		Solutic	n heat-treat	ed & preci	pitation heat-	reated
		H-2	2 <u>1 H-1</u>		H2A	H1	Strain	hardened to	specified s	trength	
		H-2	<u>2 H-32</u>		H2B	H3B	1/4 Ha	rd stabilized			
			24 H-34		HZU LLOF	HJU	1/2 Ha	rd stabilized			
		<u>п-2</u>	<u>.u п-30</u>)g Ц 20		п2г ЦЭЦ	<u>П3Г</u>	5/4 Ha	ard stabilized	h		
		L H-7	<u>.o H-38</u>		п2Н	пзн	rully fi	aiu, stabilize	u		

Jindal Aluminium Ltd.

CHEMICAL COMPOSITION OF WROUGHT ALUMINIUM & ALUMINIUM ALLOYS

Designatio New C	on Old	Aluminium	Copper	Magnesium	Silicon	Iron	Manganese	Zinc	TI and/or other Grain Refining Elements	Chromium	Remarks
19000 E	E1C	99.0 min	0.1	_	0.5	0.6	0.1	-	-	-	Ti+V=0.07; Total impurities=1.00
19500 E 19501 E	E1B E1E	99.5 min	0.05	-	0.3	0.4	0.05	-	-	-	Ti+V=0.07; Total impurities=0.50
52000 N	NE4	Remainder	0.1	1.7- 2.6	0.6	0.5	0.5	0.2	0.2	0.25	Cr+Mn=0.5
53000 N	NE5	Remainder	0.1	2.8- 4.0	0.6	0.5	0.5	0.2	0.2	0.25	Cr+Mn=0.5
63400 H	HE9	Remainder	0.1	0.4- 0.9	0.3- 0.7	0.6	0.3	0.2	0.2	0.1	
63401 E	91E	Remainder	0.05	0.4- 0.9	0.3- 0.7	0.5	0.03	0.1	0.1	0.03	Others 0.03 each total 0.1
64430 H	IE30	Remainder	0.1	0.4- 1.2	0.6- 1.3	0.60	0.4- 1.0	0.1	0.2	0.25	
65032 H	IE20	Remainder	0.15- 0.4	0.7- 1.2	0.4- 0.8	0.7	0.2- 0.8	0.2	0.2	0.15- 0.35	Either Mn or Cr Shall be present
6061		Remainder	0.15- 0.4	0.8- 1.2	0.4- 0.8	0.7	0.15	0.25	0.15	0.04- 0.35	Others each 0.05 total 0.15
6005		Remainder	0.10	0.4- 0.6	0.6- 0.9	0.35	0.10	0.10	0.10	0.10	Others each 0.05 total 0.15
6060		Remainder	0.1	0.35- 0.6	0.3- 0.6	0.1- 0.3	0.1	0.15	0.1	0.5	Others each 0.05 total 0.15
6066		Remainder	0.7- 1.2	0.8- 1.4	0.9- 1.8	0.5	0.6- 1.1	0.25	0.2	0.4	Others each 0.05 total 0.15
64423		Remainder	0.5- 1.0	0.5- 1.3	0.7- 1.3	0.8	1.0	-	-	-	
6082		Remainder	0.10	0.6- 1.2	0.7- 1.3	0.50	0.40- 1.0	0.20	0.10	0.25	
3103		Remainder	0.1 max	0.3 max	0.5 max	0.7 max	0.9-1.5	0.2 max	0.2 max	0.1 max	0.1 Zr+Ti
24345		Remainder	3.8-5.0	0.2-0.8	0.5-1.2	0.7 max	0.3-1.2	0.2 max	0.3 max	0.3 max	
6262		Remainder	0.15-0.4	0.8-1.2	0.4-0.8	0.7 max	0.15 max	0.25 max	0.15 max	0.04-0.14	Bi:0.4-0.7 & Pb: 0.4-0.7
7075		Remainder	1.2-2.0	2.1-2.9	0.4 max	0.5 max	0.3 max	5.1-6.1	0.2 max	0.18-0.28	0.25 Zr+Ti

Note:- 1. *Titanium and / or other grain refining elements and / or Chromium may be present at the option of the supplier provided the total content does not exceed 0.3 percent.
2.Composition limits are in percent maximum unless shown otherwise.

ALUMINIUM ALLOY SPECIFICATION & SELECTION

	Mechanical Properties												
Alloy Speci	IS fication	Condition	Size mm	0.2% Stre Kgf/mm ²	proof ess Mpa	Ultir ten Strei Kgf/mm ²	nate sile ngth Mpa	Elongation % on 50mm G. Length minimum	Typical Brinell Hardness Number	Typical Application & Properties			
E1B	19500	М	Upto 100	-	-	6.63	65	23	18	Used in electrical conductors, bus bars, rectangular and tubular connectors and high electrical conductivity applications.			
E1C	19000	М	Upto 100	_	-	6.63	65	18	20	Used where formability is a major requirement and strength and stiffness are not. Used in chemical processing equipments, refrigeration and accessories for electrical conductors.			
E1E	19501	М	Upto 100	-	-	6.12	60	25	18	Used in electrical conductors, bus bars, rectangular and tubular connectors and high electrical conductivity applications.			
E91E Ra Ra	63401 ange 1 ange 2	W WP-1 WP-2	- - Upto 75	8.2 17.3 13.8	80 170 135	14.3 20.4 17.3	140 200 170	12 10 12	-	Good for high strength, electrical bus bars, fittings conductors etc.			
NE-4	52000	М	All Size	7.14	70	16.3	160	14	45	Applications requiring high fatique strength Weld ability & good marine corrosion resistance. Used in pressure vessels, oil and hydraulic tubes, chemical industry & transportation.			
NE-5	53000	М	Upto 50 50 - 150	10.2 10.2	100 100	22 20.4	215 200	14 14	60	Transport equipments marine, automobile & aircraft uses, T.V. Towers, missile components, good marine corrosion resistance, Weldability & hardness.			

						Mechar	nical Pro	perties		
Alloy Specif	IS fication	0 and 1	Size	0.2% Stre	oroof ess	Ultim Tensile St	ate trength	Elonga- tion % on	Typical Brinell	Typical Application
Old	New	tion	mm	Kgf/mm² Mpa	Mpa Min	Kgf/mm² Min	Mpa Min	G. Length minimum	Hardness Number	& Properties
		М	All sizes	-		11.2	110	13	-	The best general properties Architectural sections such as
HE-9	63400	W	0-150	8.2 11 2	80 110	14.3 15.3	140 150	14 7	44 47	windows and door frames, curtain walling, hand rail, wall facing, trimmings & mouldings window
		Р WP	0-150	15.3	150	18.9	185	7	58	section in transport, irrigation tubes, etc., Anodising finish is good
		М	All sizes	5.1	50	11.2	110	12	-	General structural & architectural
HE-20	65032	W	0-150	11.7	115	19	185	14	58	applications such as railings supports, transportation
		WP	Upto 150	24.0	235	28.5	280	7	87	surface finish & strength are
			150-200	20.4	200	24.9	245	6	76	important can be anodised.
		М	All sizes	8.2	80	11.2	110	12	-	Structural applications of all kinds
HE-30	64430	W	0-150	12.2	120	19	185	14	60	such as road & rail transport &
		WP WP	0-5mm 5-75	26.0	255	30.0 31.6	295 310	/ 7	90 05	towers, marine applications, rivets
		WP	75-150	27.5	270	30.0	295	7	95 90	etc. Good wear resistance &
		WP	150-200	24.4	240	28.5	280	6	87	
	6061	T4	All sizes	11.2	110	18.3	180	14	-	General structural & architectural applications such as railings
	0001	T6	All sizes	24.5	240	26.5	260	9	82	components, etc. Where both surface finish & strength are important can be anodised.
	6005	T6	All sizes	21.9	215	26.5	260	10	82	General structural & architectural applications such as railings supports, transportation components, etc. Where both surface finish & strength are important can be anodised.
										The best general properties Architectural sections such as windows and door frames, curtain
	6060	T5	All sizes	10.2	100	14.8	145	8	45	walling, hand rail, wall facing,
		T6	All Sizes	15.3	150	19.4	190	8	59	section in transport, irrigation tubes, etc., Anodising finish is good
		0	All sizes	12.8	125	20.4 (max)	200 (max)	16	-	General structural &
	6066	T4	All sizes	17.3	170	28	275 (max)	14	-	Architectural applications. where strength & surace
		T6	All sizes	31.62	310	35.19	345	8	-	linish are important.
		М	All sizes	-	-	12.2	120	10	-	Characteria de la constante de
	64423	0	All sizes	13.0 (max)	125 (max)	22.0 (max)	215 (max)	15	-	cranes, vehicle bridges applications
		W	All sizes	16.0	155	27.0	265	13	-	
		WP	All sizes	27.0	265	33.7	330	7	-	

ALUMINIUM ALLOY SPECIFICATION & SELECTION

_	31000	м		_		0.7	05	16	For heat exchangers, air conditioning, etc.
HE 15	24345	M	-	9,2	- 90	7.7 15.3	7J 150	10 -	sonartioning, etc.
HE 15	24345	0		17.9	175 (max)	24.5	240(max)	12	
HE 15	24345	W	0-10	23.0	225	38.3	375	10	
HE 15	24345	W	10-75	24.0	235	39.3	385	10	
HE 15	24345	W	75-150	24.0	235	39.3	385	8	
HE 15	24345	W	150-200	23.0	225	38.3	375	8	
HE 15	24345	WP	0-10	38.3	375	43.9	430	6	Applications
HE 15	24345	WP	10-25	40.8	400	46.9	460	6	Applications
HE 15	24345	WP	25-75	42.8	420	49.0	480	6	strength is
HE 15	24345	WP	/5-150	41.3	405	46.9	460	6	main criteria
HE 15	24345	WP	150-200	38.8	380	43.9	430	6	
-	6262	T6	0-200	24.5	240	26.5	260	8	Free machining application
HE 17	7075	T6	0-25	49.0	480	55.1	540	5	Highly stressed
HE 17	7075	T6	25-100	51.0	500	57.1	560	8	structural componen
HE 17	7075	T6	100-150	47.9	470	54.1	530		and nuclear applications
HE 17	7075	T6	150-200	40.8	400	47.9	470		approximit

EXTRUDED SECTIONS : STANDARD MANUFACTURING TOLERANCES

THE STANDARD MANUFACTURING TOLERANCE GIVEN HERE ARE APPLICABLE TO THE AVERAGE SHAPE. WIDER TOLERANCE MAY BE REQUIRED FOR SOME SHAPES AND CLOSER TOLERANCES MAY BE POSSIBLE FOR OTHERS. TOLERANCE STRICTER THAN STANDARD SHALL BE SUBJECT TO SPECIAL ENOURY.

Dound Do	TABLE I	Tolera	TABLE II Tolerance on Width (Measured Across Flats) of Soli Sections (Rectangular Flats Squares Heragons et			
		Sectio	ns. (Rectangular, Flat	s, Squares, Hexagons, e		
Specified Diameter (mm	n) Tolerance mr	m+/-	Vidth and Width Across Flats (mm)	Tolerance mm+/-		
Upto 12.0	0.20		4 to 6	0.20		
12.1 to 25.0	0.25		8 to 10	0.23		
25.1 to 39.9	0.30		12	0.25		
40.0 to 49.9	0.38		16	0.28		
50.0 to 55.9	0.46		20	0.30		
56.0 tp 70.9	0.53		25	0.33		
71.0 to 79.9	0.61		32	0.38		
80 and Above	e 1%		40 to 50	0.46		
Noto · For interm	nodiato sizos tako tol	oranco	60	0.53		
for next h	igher value.		80 to 100	0.69		
	.g		120	0.76		
			160	1.02		
			100			
WIDTH	TOLERANCES I	TABLE III FOR SOLID S	ECTIONS AT (1.10 OPEN ENDS		
WIDTH Depth o	TOLERANCES I	TABLE III FOR SOLID S	180 ECTIONS AT (end Tolerance Displacement be controlled Tolerance on	1.10 OPEN ENDS t of any one leg to independently by angle		
WIDTH Depth o	TOLERANCES I	TABLE III FOR SOLID S Oper	180 ECTIONS AT (end Tolerance Displacement be controlled Tolerance on a	1.10 OPEN ENDS t of any one leg to independently by angle		
WIDTH Depth o	f Flange	TABLE III FOR SOLID S Oper	180 ECTIONS AT (end Tolerance Displacement be controlled Tolerance on h Tolerance mm+/-) will be as be	1.10 OPEN ENDS t of any one leg to independently by angle		
WIDTH Depth o	f Flange	TABLE III FOR SOLID S Oper	180 ECTIONS AT (Displacement be controlled Tolerance on h Tolerance mm + /-) will be as be ange or Leg (mm)	1.10 OPEN ENDS t of any one leg to independently by angle		
WIDTH Depth o Specified width (mm)	f Flange	TABLE III FOR SOLID S Oper	180 ECTIONS AT (end Tolerance Displacement be controlled Tolerance on h Tolerance mm +/-) will be as be ange or Leg (mm) 32.1 to 64.0	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0		
WIDTH Depth o Specified width (mm) Upto 6.0	TOLERANCES I	TABLE III FOR SOLID S Oper	180 ECTIONS AT (Displacement be controlled Tolerance on h Tolerance mm +/-) will be as be ange or Leg (mm) 32.1 to 64.0	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 -		
WIDTH Depth o Specified width (mm) Upto 6.0 6.1 to 12.0	TOLERANCES I	TABLE III FOR SOLID S Oper	180 ECTIONS AT (Displacement be controlled Tolerance on a h Tolerance nm+/-) will be as be ange or Leg (mm) 32.1 to 64.0 - 0.45	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - -		
WIDTH Depth of Specified width (mm) Upto 6.0 6.1 to 12.0 12.1 to 20.0	TOLERANCES I	TABLE III FOR SOLID S Oper	180 180 ECTIONS AT (or end Tolerance Displacement be controlled Tolerance on the holerance h Tolerance mm + /-) will be as been ange or Leg (mm) 32.1 to 64.0 - 0.45 0.50	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - - - - - - - - - - - - - - - - - -		
WIDTH Depth of Specified width (mm) Upto 6.0 6.1 to 12.0 12.1 to 20.0 20.1 to 25.0	TOLERANCES I	TABLE III FOR SOLID S Oper V Vidth Tolerance (r Depth of FI 16.1 to 32.0 - 0.40 0.45 0.50	180 180 ECTIONS AT (i end Tolerance Displacement be controlled Tolerance nm +/-) will be as be ange or Leg (mm) 32.1 to 64.0 - 0.45 0.50 0.55	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - - 0.65		
WIDTH Depth of Specified width (mm) Upto 6.0 6.1 to 12.0 12.1 to 20.0 20.1 to 25.0 25.1 to 38.0	TOLERANCES I	TABLE III FOR SOLID S Oper \/ 7	ECTIONS AT (Displacement be controlled Tolerance nm+/-) will be as be ange or Leg (mm) 32.1 to 64.0 - 0.45 0.50 0.55 0.65	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - - - 0.65 0.75		
WIDTH Depth of Specified width (mm) Upto 6.0 6.1 to 12.0 12.1 to 20.0 20.1 to 25.0 25.1 to 38.0 38.1 to 50.0	TOLERANCES I of Flange	TABLE III FOR SOLID S Oper V <td>ECTIONS AT (180 ECTIONS AT (Displacement be controlled Tolerance on h Tolerance nm +/-) will be as be ange or Leg (mm) 32.1 to 64.0 - 0.45 0.55 0.65 0.65 0.80</td> <td>1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - - 0.65 0.75 0.90</td>	ECTIONS AT (180 ECTIONS AT (Displacement be controlled Tolerance on h Tolerance nm +/-) will be as be ange or Leg (mm) 32.1 to 64.0 - 0.45 0.55 0.65 0.65 0.80	1.10 OPEN ENDS t of any one leg to independently by angle elow 64.1 to 150.0 - - 0.65 0.75 0.90		

there are both open and closed ends.

TABLE IV

TOLERANCES ON THICKNESS OF REGULAR SECTIONS AND BARS OTHER THAN ROUND RODS AND HEXAGON BARS

Nominal Thickness of		Ţ	olerance	es - (mm	+/-) give Width	en in colu of Sectio	imns bel on (mm)	ow resp	ective w	idth	
Section mm	12	16	20	25	32	40	50	60	80	100	120
*1	-	-	-	-	-	-	-	-	-	-	-
*1.2	-	-	-	_	-	-	-	-	-	-	-
1.6	0.18	0.20	0.20	0.20	0.20	-	-	-	-	-	-
2	0.18	0.20	0.20	0.20	0.20	0.23	0.25	0.28	0.30	0.33	0.36
2.5	0.18	0.20	0.20	0.20	0.20	0.23	0.25	0.28	0.30	0.33	0.36
3	0.18	0.20	0.20	0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38
4	0.20	0.23	0.23	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41
5	0.20	0.23	0.23	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41
6	0.20	0.23	0.23	0.23	0.25	0.28	0.30	0.33	0.36	0.41	0.46
8	0.23	0.25	0.25	0.25	0.28	0.30	0.33	0.36	0.38	0.43	0.48
10	0.23	0.25	0.25	0.25	0.28	0.30	0.33	0.36	0.38	0.43	0.48
12	0.25	0.28	0.28	0.28	0.30	0.33	0.36	0.38	0.41	0.46	0.48
16	0.28	0.30	0.30	0.30	0.33	0.36	0.38	0.41	0.43	0.48	0.51
20	-	0.30	0.30	0.30	0.36	0.38	0.41	0.43	0.46	0.51	0.53

NOTE : For intermediate sizes, tolerances for the next higher value shall be taken. * *To be regarded as Special Sections.*

Jindal Aluminium Ltd.

TABLE V

TOLERANCES ON OVERALL DIMENSIONS OF HOLLOW SECTIONS

		Toloropcoc (mm ()	
		Iolerances - (IIIII+7-)	
		Allowable deviations of width or depth at corners from specified width or depth	Allowable deviations of width or depth at corners from specified width or depth
Specifie width a	ed width or		
Hollow	Sections (mm)		
Over	Upto and Including	Difference between AA & Specified width or depth	Difference between AA & Specified width, depth or distance across flats.
12	19	0.30	0.51
19	25	0.35	0.51
25	32	0.40	0.56
32	40	0.46	0.66
40	50	0.51	0.64
50	63	0.60	0.71
63	80	0.70	0.80
80	100	0.80	0.89

TABLE VI

TOLERANCES ON WALL THICKNESS OF HOLLOW SECTIONS

	WALL					-	Tolerar	ıces - (ı	mm +/-)
	mm		Allowa ckness	ible de from S	viation Specifie	ı of Me ed Wall	an Wal I Thickr	l 1ess	Allowable deviations of Wall Thickness at any point from mean wall thickness (Eccentricity)
			A →	A		B	E A	3	
		1	Differe and Ov	nce be Specifi verall d	tween ed Wa imensi	1/2 (A II Thick ions - n	.A + BB) ness. nm)	Difference between AA and mean wall thickness. AA - 1/2(AA+BB)
Over	Upto and Including	Over 12 Upto 25	25 32	32 40	40 50	50 63	63 80	80 100	Circumscribing Circle Diameter Under 125 mm
1	1.2	0.22	0.22	-	-	-	-	_	0.22
1.2	1.5	0.28	0.28	0.28	0.30	-	-	_	0.33
1.5	2	0.30	0.33	0.33	0.36	-	-	-	0.41
2	2.5	0.33	0.33	0.36	0.38	0.43	0.46	-	0.51
2.5	3	0.41	0.43	0.46	0.48	0.51	0.53	0.56	0.56
3	4	0.53	0.56	0.58	0.61	0.64	0.66	0.69	0.70
4	5	-	0.71	0.74	0.76	0.79	0.81	0.84	1.00

TABLE VII

TOLERANCES ON DIAMETER (INSIDE & OUTSIDE) OF EXTRUDED ROUND TUBES

		Tolerances - (mm +/-)								
DIAME (mm	IER I)	Allowable deviation of mean diameter from specified diameter	Allowable deviation of diameter at any point from specified diameter (ovality)							
		A A A								
Over	Upto and Including	Difference between 1/2 (AA + BB) and specified diameter	Difference betweem AA and specified diameter							
12	22	0.25	0.50							
22	36	0.30	0.60							
36	45	0.40	0.80							
45	50	0.45	0.90							
50	63	0.50	1.00							
63	80	0.60	1.30							
80	150	1% of diameter	2.2% of diameter							

TOLERANCES ON WALL THICKNESS OF EXTRUDED ROUND TUBES

SPEC				Tolerances	- (mm +/-)
THICI (m	ALL KNESS hm)	Allowable of Thickness from Difference b specific	deviation of n specified V Control of the specified V etween 1/2 ed Wall Thio	mean Wall Vall Thickness § (AA+BB) & ckness	Allowable deviation of Wall Thickness at any point from mean Wall Thickness (Eccentricity)
0.107	Upto and	Outsi	de diamete	r - mm	
Over	Including	Under 30	30 - 65	65 - 100	
1	1.3	0.20	0.23	0.25	Difference between AA & mean
1.3	1.6	0.30	0.30	0.33	wall thickness as extruded
1.6	2	0.35	0.35	0.40	AA - 1/2 (AA+BB)
2	3	0.45	0.50	0.55	Plus & Minus
3	4	0.60	0.60	0.65	10% of mean wall thickness
4	5	0.80	0.80	0.85	max : +/- 1.5
5	6	0.85	0.85	0.90	mm :+7- 0.25

TABLE IX

TOLERANCES FOR FLATNESS

SO	lDS		HOLLOWS		
Surface Width	Tolerances - mm	Minimum	Tolerances - mm		
mm.		Thickness of metal forming the surface mm	max. allowable deviation (D)		
Upto 25	+/-0.18		Width upto 25mm	Width over 25mm	
Over 25 Upto & including 38	0.25		or any 25 mm increment of wider Surface		
Over 38 Upto & including 50	0.30	Upto 4.5	+/-0.20	+/-0.008xW	
Over 50	0.30 Plus 0.13 per each 25 mm of Width	4.5 & over	+/-0.15	+/-0.006xW	

TABLE X ANGULAR TOLERANCES FOR REGULAR SECTIONS

Minimum specified leg Thickness mm.	Allowable deviation from specified Angle		
Upto and including 5	$+/-2^{\circ}$		
Over 5 upto and including 19	+/- 1.5°		
Over 19	+/- 1 ⁰		

NOTE : 1. Angles should be measured at the extremities of the sections. 2. Not applicable to shapes.

TABLE XI

TOLERANCES ON TWIST

PRODUCT	Specified	Specified	Tolerances - Degree (+) & (-)			
Width Thick (Bar & Tubes) (Recta Circumscribing Tub Circle diameter Minir (Shapes) mm Thick (shape		Thickness (Rectanglar Tubes) Minimum Thickness (shapes) mm	Allowable deviation from straigthness			
			In any metre or less of length	In total length of piece		
BAR	Upto 38	All	+/- 2º	2° x length m 6° max. In full length		
	38 & over	All	1 ¹ /2 ⁰	1 ^{1/2} x length m 5° max.In full length		
SHAPES	Upto 38	All	2°	2° x length m 6° max. In full length		
	38 &over	All	1 ¹ /2 ⁰	$1^{1/2}$ x length m 5° max.In full length		
HOLLOWS	Upto 38	All	2°	2° x length m 6° max. In full length		
(other than Round Tubes)	38 &over	All	1 ¹ /2 ⁰	$1^{1/2^0}$ x length m 5° max.In full length		

TABLE XII

TOLERANCES FOR STRAIGHTNESS (Rods, Bars, Shapes & Tubes)

PRODUCT Specified DIA. (Rod) Specified Width (Bar) Circumscribing Circle Diameter (shapes)		Specified Thickness (Rectangles) Minimum Thickness (shapes)	Tolerances -mm Allowable deviation (D) from straighthness			
Specified DIA. Specified (Tubes) Thickness mm. (Tubes) mm.						
			In one metre length	In total length of piece		
Rod & Square, Hexagonal and Octagonal Bar	All		1.7	1.7 x length m		
Rectangular	Upto 38	Upto 2.35	4.0	4 x length m		
Bar	38 & over	2.35 and over	1.7	1.7 x length m		
Shapes	Upto 38	Upto 2.35	4.0	4 x length m		
	38 & over	2.35 and over	1.7	1.7 x length m		
Tubes	All	Upto 2.35	4.0	4 x length m		
TUDES		2.35 and over	1.7	1.7 x length m		

TABLE XIII CONVERSION OF SWG TO INCHES & mm.

SWG	Inches	mm	SWG	Inches	mm	SWG	Inches	mm
6	0.192	4.877	12	0.104	2.642	18	0.048	1.219
7	0.176	4.470	13	0.092	2.337	19	0.040	1.016
8	0.160	4.064	14	0.080	2.032	20	0.036	0.914
9	0.144	3.658	15	0.072	1.829	21	0.032	0.812
10	0.128	3.251	16	0.064	1.626	22	0.028	0.711
11	0.116	2.946	17	0.056	1.422	23	0.024	0.610

Jindal Aluminium Ltd.